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Innovative base-isolated building with large
mass-ratio TMD at basement for greater
earthquake resilience

Takuya Hashimoto, Kohei Fujita, Masaaki Tsuji and Izuru Takewaki*
Abstract

Tuned mass dampers (TMD) have been used for the reduction of building responses to wind loading in many high-rise
buildings. An innovative and resilient base-isolated building with a large mass-ratio TMD is introduced here primarily for
earthquake loading in which the large mass-ratio TMD is located at basement. This new hybrid system of base-isolation
and structural control possesses advantageous features compared to existing comparable systems with a TMD at the
base-isolation story. The TMD stroke can be reduced to a small level with the use of an inertial mass damper and its
reaction can be limited to a lower level by detaching its connection to ground. The proposed hybrid system has another
advantage that the TMD mass does not bring large gravitational effect on the building itself. It is demonstrated that the
proposed hybrid system is robust both for pulse-type ground motions and long-period, long-duration ground motions
which are regarded as representative influential ground motions.

Keywords: Earthquake resilience; Base-isolation; Tuned mass damper; Large mass-ratio TMD; Inertial mass damper;
Basement; Hybrid system
Introduction
There is an increasing need and interest of construction of
high-rise buildings in urban areas. This trend will be accel-
erated in the future. High-rise buildings and super high-
rise buildings are required to resist for various external
loadings, e.g. wind and earthquake loadings. Enhancement
of resilience of such high-rise and super high-rise buildings
after intensive wind and earthquake loadings is a major
concern from the viewpoint of the business continuity plan
(BCP) which is the most controversial issue in the sound
development of society (Takewaki et al. 2011, 2012b).
Tuned mass dampers (TMD) are useful for the reduction

of building responses to wind loading and are installed in
many high-rise buildings all over the world (Soong and
Dargush 1997). However it is well known that TMD is not
effective for earthquake responses because of its limitation
on stroke and realization of large mass-ratio TMD.
Nevertheless, some attempts have been made on the

introduction of large mass-ratio TMD mainly for earth-
quake loading (Chowdhury et al. 1987; Feng and Mita
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1995; Villaverde 2000; Arfiadi 2000; Zhang and Iwan
2002; Villaverde et al. 2005; Mukai et al. 2005; Tiang
et al. 2008; Matta and De Stefano 2009; Petti et al.
2010; Angelis et al. 2012; Nishii et al. 2013; Xiang and
Nishitani 2014). Actually several projects are being
planned in Japan, e.g. installation of large-mass pendu-
lum system at roof and usage of upper stories as TMD
masses.
Recently large mass-ratio TMDs are investigated for base-

isolated buildings (Villaverde 2000; Villaverde et al. 2005;
Angelis et al. 2012; Nishii et al. 2013; Xiang and Nishitani
2014). While usual high-rise buildings exhibit large displace-
ment around the top story, base-isolated buildings show
relatively large displacement around the base-isolation story
near ground surface. This property is very advantageous
from the view point of mitigation of effect of excessive verti-
cal load due to large mass-ratio TMD (Kareem 1997; Zhang
and Iwan 2002; Mukai et al. 2005; Petti et al. 2010; Nishii
et al. 2013; Xiang and Nishitani 2014).
However there still exist several issues to be resolved, e.g.

avoidance of excessive vertical load by large mass-ratio
TMD, reduction of TMD stroke, reduction of TMD sup-
port reactions.
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Fig. 3 Base-isolated building models treated in this paper (a BI Model: Simple base-isolated building, b Imass TMD Model: Model proposed by Nishii et al.
(Nishii et al. 2013), c NewTMD Model: Model proposed by Xiang and Nishitani (Xiang and Nishitani 2014), d Proposed-1 Model: Base-isolated building with
large-mass ratio TMD at basement, e Proposed-2 Model: Base-isolated building with large-mass ratio TMD at basement using inertial mass damper for
stroke reduction)
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The purpose of this paper is to propose an innova-
tive system of base-isolated buildings with a large
mass-ratio TMD at basement. The most serious
issue of effect of excessive vertical load due to large
mass-ratio TMD on the main building is avoided by
introducing the large mass-ratio TMD at basement
Fig. 4 Determination of stiffness of TMD (tuning of TMD)
which is made possible due to the large displace-
ment of a floor in the base-isolation story near base-
ment. Another issue of large stroke of TMD even in
the large mass-ratio TMD is overcome by introdu-
cing inertial mass dampers in parallel to the spring-
dashpot system in the TMD system.
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Fig. 5 Simulated long-period ground motion (T = 7.0 s)
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Fig. 6 Simulated pulse-type ground motion (T = 2.0 s)
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Base-isolated building with large-mass ratio TMD
at basement
Figure 1(a) shows a conventional system with small mass-
ratio TMD on the roof which is effective only for wind
loading. On the other hand, Fig. 1(b) presents a high-rise
building with large mass-ratio TMD on the roof which is
believed to be effective for long-period ground motion and
to cause significant vertical load on the building. Consider
next a base-isolated building system, as shown in Fig. 1(c),
with large mass-ratio TMD on the roof which lengthens
the fundamental natural period of the high-rise building
and also causes large vertical load on the building. The
models in Fig. 1(b) and (c) are thought to be unrealistic be-
cause of their excessive vertical load. Figure 2(a) indicates
the proposed base-isolated building system with large
mass-ratio TMD at basement using sliders and rails. This
model shown in Fig. 2(a) is called the Proposed-1 model. In
Fig. 2(a) the large mass-ratio TMD is located on the sliders
and rails and in Fig. 2(b) the large mass-ratio TMD is set
on the floor just above the base-isolation system.

Base-isolated building without TMD
Consider a base-isolated building without TMD. This
model is called a BI model (see Ariga et al. 2006). Let
kI, cI, mI denote the stiffness, damping coefficient and
mass of the base-isolation story in the BI model. Fur-
thermore let k1, c1, m1 denote the stiffness, damping
coefficient and mass of the superstructure. The dis-
placements of masses m1 and mI relative ground are
denoted by u1 and uI, respectively. This model is sub-
jected to the base ground acceleration üg. The equa-
tions of motion for this model can be expressed by

mI 0
0 m1

� �
€uI

€u1

� �
þ cI þ c1 −c1

−c1 c1

� �
_uI

_u1

� �

þ kI þ k1 −k1
−k1 k1

� �
uI
u1

� �
¼ −mI €ug

−m1€ug

� �

ð1Þ

Conventional base-isolated building with large-mass ratio
TMD
Recently some systems of a base-isolated building with
large-mass ratio TMD have been proposed. Mukai et al.
(2005) proposed a new-type active response control system
to improve the effectiveness of base-isolated buildings. In
this system, the TMD mass is connected both to a super-
structure and the basement (ground). A negative stiff-
ness mechanism is used to amplify the response of
the TMD mass which enables the avoidance of intro-
duction of large mass-ratio TMD. Nishii et al. (2013)
revised the system due to Mukai et al. (2005) by re-
placing the active damper with negative stiffness with
a passive inertial mass damper system. This model is
called the Imass TMD model in this paper. Although
their system is demonstrated to be effective for the
reduction of superstructure response, the performance
check on the reaction of the TMD system is not con-
ducted. Xiang and Nishitani (2014) presented a sys-
tem for a base-isolated building with a TMD mass
which is located on the base-isolation story level and
connected directly to the ground. This model is called
the NewTMD model in this paper. They demonstrated
that their system is effective for a broad range of ex-
citation frequency and proposed an optimization
method for determining the system parameters.
Consider an Imass TMD model and a NewTMD

model as shown in Fig. 3. Let k2, c2, m2 denote the
stiffness, damping coefficient and mass of the TMD
system. z2 indicates the inertial mass capacity of the
inertial mass damper installed between TMD mass
and ground in the Imass TMD model.
For later comparison, the Imass TMD model and

the NewTMD model are explained in the following.
The equations of motion for Imass TMD model may
be expressed by

mI 0 0
0 m1 0
0 0 m2 þ z2

0
@

1
A €uI

€u1

€u2

0
@

1
Aþ
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0
@

1
A _uI
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0
@

1
A

þ
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0
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@
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0
@

1
A

ð2Þ

On the other hand, the equations of motion for
NewTMD model may be presented by



Hashimoto et al. Future Cities and Environment  (2015) 1:9 Page 5 of 19
mI 0 0

0 m1 0

0 0 m2

0
B@

1
CA

€uI

€u1

€u2

0
B@

1
CAþ

cI þ c1 −c1 0

−c1 c1 0

0 0 c2

0
B@

1
CA

_uI

_u1

_u2

0
B@

1
CA

þ
kI þ k1 þ k2 −k1 −k2

−k1 k1 0

−k2 0 k2

0
B@

1
CA

uI
u1
u2

0
B@

1
CA ¼

−mI €ug

−m1€ug

−m2€ug

0
B@

1
CA ð3Þ

Base-isolated building with large-mass ratio TMD at
basement using inertial mass damper for stroke reduction
The equations of motion for a base-isolated building with
large-mass ratio TMD at basement may be expressed by
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Fig. 7 Response to simulated long-period ground motion
A base-isolated building, as shown in Fig. 2(c), with
large-mass ratio TMD at basement using an inertial mass
damper for stroke reduction is called the Proposed-2
model. A mechanism example of inertial mass dampers is
shown in Fig. 2(d) (Takewaki et al. 2012a). The equations
of motion for this model may be expressed by
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The model parameters of BI Model, Proposed-1 Model
and Proposed-2 Model as shown in Fig. 3 are specified
as follows. The same model parameters are used for
Imass TMD Model and NewTMD Model. The influence
of the rail friction on the response of the proposed
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models will be discussed in Section ‘Influence of rail fric-
tion on response of proposed system’.
The superstructure is a 20-story or 50-story reinforced

concrete building and is modeled into a single-degree-of-
freedom (SDOF) model. This modeling into an SDOF
model is thought to be appropriate in a base-isolated
building. The equal story height of the original building is
3.5 m. The building has a plan of 40 × 40 m and the floor
mass is obtained from 1.0 × 103 kg/m2. The floor mass in
each floor is 1.6 × 106 kg. The fundamental natural period
of the superstructure with fixed base is T1 = 1.4 s for a 20-
story building and T1 = 3.5 s for a 50-story building. The
structural damping ratio is assumed to be h1 = 0.02. The
stiffness and damping coefficient of the SDOF model are
computed by k1 ¼ m1ω2

1 , c1 = 2h1k1/ω1 with the funda-
mental natural circular frequency ω1 = 2π/T1.
The mass of the base-isolation story is 4.8 × 106 kg. The

fundamental natural period of the BI model with rigid super-
structure is TI = 5.0 s for the 20-story model and TI = 6.0 s
for the 50-story model. The damping ratio of the BI model
with rigid superstructure is hI = 0.1. The stiffness and
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Fig. 8 Response to simulated pulse-type ground motion
damping coefficient of the SDOF model are computed
by kI ¼ mI þm1ð Þω2

I , cI = 2hIkI/ωI with the fundamen-
tal natural circular frequency ωI = 2π/TI. As for TMD,
the mass ratio m2/m1 is set to μ = 0.1 and the inertial
mass damper ratio z2/m1 is set to ηs = 0.06. The damp-
ing ratio is assumed to be h2 = 0.3. The stiffness and
damping coefficient of TMD are given by k2 ¼ m2 þ z2ð Þ
ω2
2, c2 = 2h2k2/ω2 in terms of the natural circular frequency

ω2 of TMD . The process of determining ω2 is explained
in Section ‘Determination of stiffness and damping coeffi-
cient of TMD’.
Determination of stiffness and damping coefficient of
TMD
In this section, the procedure of determination of stiff-
ness and damping coefficient of TMD for the proposed
model, Imass TMD model and NewTMD model is ex-
plained. The tuning of TMD is performed by minimizing
the response ratio D of the deformation of the base-
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isolation story to the base input (displacement ampli-
tude) as shown in Fig. 4.
Let us assume the input ground acceleration as

€ug ¼ Aeiωt ð6Þ

The harmonic response of the systems may be expressed
by

uI u1 u2ð Þ ¼ UI U1 U2ð Þeiωt ð7Þ

By solving the equations of motion, the response ampli-
tude may be obtained as
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Fig. 9 Influence of friction on rail in Proposed-1 Model subjected to simula
UI U1 U2ð ÞT ¼ −ω2Mþ iωCþ K
� �−1
� −mIA −m1A −m2Að ÞT

ð8Þ

where ()T indicates the matrix transpose. The displace-
ment response ratio D can then be defined by

D ¼ UI

A=ω2
I1

����
���� ð9Þ

where ωI1 is the undamped natural circular frequency of
the BI model.
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Response reduction performance of proposed
system for simple base-isolated building and
conventional base-isolation-TMD hybrid system
Simulated long-period ground motion and simulated
pulse-type ground motion
Let us assume the simulated long-period ground
motion in terms of circular frequency ω = 2π/T (T:
period) as

€ug ¼ A sinωt ð10Þ

Figure 5 shows a simulated long-period ground motion
with T = 7.0(s).
On the other hand, let us assume the simulated pulse-

type ground motion as
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Fig. 10 Influence of friction on rail in Proposed-1 Model subjected to simu
_up ¼ Ctne−at sinωpt ð11Þ

€up ¼ Ctne−at
n
t
−a

� �
sinωpt þ ωp cosωpt

h i
ð12Þ

where C: an amplitude coefficient, a: reduction coeffi-
cient, n: envelope shape coefficient, ωp = 2π/T:circular
frequency (see Xu et al. 2007). C is determined so as to
control the maximum velocity and a is determined from
a = 0.4ωp. The maximum ground velocity is set to
0.91(m/s) (the maximum velocity of JMA Kobe NS
1995). The period of the pulse wave is specified in the
range of 1.0 ~ 3.0(s) with 0.1(s) as the increment. Figure 6
shows the pulse-type wave of T = 2.0(s).
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Response reduction performance of proposed system for
simple base-isolated building
Figure 7 shows the comparison of various perfor-
mances under simulated long-period ground motion
among BI model, Proposed-1 model, Proposed-2
model, Imass TMD model and NewTMD model. The
performances to be compared are (a) Deformation of
base-isolation story, (b) TMD stroke, (c) Reaction of
spring supporting TMD, (d) Reaction of oil damper
supporting TMD, (e) Reaction of inertial mass
damper supporting TMD. The left figures are for 20-
story models and the right figures are for 50-story
models. It can be observed that Proposed-1 model
can reduce the deformation of base-isolation story by
about 38 % compared to BI model and Proposed-2 model
can decrease TMD stroke by about 27 % compared to
Proposed-1 model.
On the other hand, Fig. 8 illustrates the compa-

rison of those performances under simulated pulse-
-1.0

-0.5

0.0

0.5

1.0

D
ef

or
m

at
io

n 
of

 
ba

se
-is

ol
at

io
n 

st
or

y 
(m

)

Time (s)

T
op

-f
lo

or
 a

bs
ol

ut
e 

-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

D
ef

or
m

at
io

n 
of

 
su

pe
rs

tr
uc

tu
re

 (
m

)

Time (s)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (s)

T
M

D
 d

is
pl

ac
em

en
t 

re
la

tiv
e 

to
 g

ro
un

d 
(m

)

R
ea

ct
io

n 
of

 s
pr

in
g 

su
pp

or
tin

g 
T

M
D

 (
K

N
)

-6000

-4000

-2000

0

2000

4000

6000

R
ea

ct
io

n 
of

 o
il 

da
m

pe
r

 s
up

po
rt

in
g 

T
M

D
 (

K
N

)

Time (s)

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

R
ea

ct
io

n 
of

 in
er

tia
l m

as
s 

(a) Deformation of base-isolation story

(g) Reaction of oil damper supporting TMD

(c) Deformation of superstructure

(e) TMD displacement relative to ground

Proposed-2 Model (
Proposed-2 Model (

Fig. 11 Influence of friction on rail in Proposed-2 Model subjected to simu
type ground motion. As in Fig. 7, the left figures
are for 20-story models and the right figures are for
50-story models. It can be observed that the de-
formation of base-isolation story of Proposed-1
model and Proposed-2 model does not change so
much from BI model and the base-isolation performance
can be kept. Furthermore Proposed-2 model can reduce
the TMD stroke by about 38 % compared to Proposed-1
model.
Response reduction performance of proposed system for
conventional base-isolation-TMD hybrid system
It is meaningful to note that, while TMD is con-
nected to the base-isolation floor in the proposed models
(Proposed-1 model and Proposed-2 model), TMD is con-
nected both to the base-isolation floor and ground in the
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TMD model and NewTMD model). For this reason the
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TMD reactions become relatively large in Imass TMD
model and NewTMD model.
Although the proposed system (Proposed-2 model) in-

creases the building response under a long-period ground
motion slightly compared to the system without an inertial
mass damper (Proposed-1 model), the response is still
smaller than that of a base-isolated building without TMD.
In addition, the proposed system (Proposed-2 model) can
reduce the TMD stroke under a long-period ground mo-
tion owing to the inertial mass damper. Furthermore, the
proposed system (Proposed-2 model) can also reduce the
TMD stroke under a pulse-type ground motion owing to
the inertial mass damper.
It can be concluded that the proposed systems (Proposed-

1 model and Proposed-2 model) can reduce the TMD stroke
and TMD reaction effectively compared to the conventional
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Fig. 12 Influence of friction on rail in Proposed-1 Model subjected to simu
NewTMD model and Imass TMD model for both long-
period ground motions and pulse-type ground motions.

Influence of rail friction on response of proposed
system
Since the friction on rail in the TMD system could affect the
performance of the proposed control system, its influence
has been investigated. Although the static friction behavior
is usually different from the dynamic one, the static friction
coefficient has been treated as the same as the dynamic one.
In this paper, the friction coefficient 0.008 has been used. In
order to simulate the friction on rail, an elastic-perfectly
plastic relation has been utilized and the initial stiffness
has been specified as 1.0 × 1010(N/m).
Figure 9 shows the influence of friction on rail in
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ground motion (20-story, input period T = 5.0 s). Figure 10
illustrates the influence of friction on rail in Proposed-1
Model subjected to simulated long-period ground motion
(50-story, input period T = 7.0 s). Furthermore Fig. 11
presents the influence of friction on rail in Proposed-2
Model subjected to simulated long-period ground mo-
tion (50-story, input period T = 7.0 s).
On the other hand, Fig. 12 shows the influence of friction

on rail in Proposed-1 Model subjected to simulated pulse-
type motion (20-story, input period T = 2.0 s). Figure 13
illustrates the influence of friction on rail in Proposed-1
Model subjected to simulated pulse-type motion (50-story,
input period T = 2.0 s). Furthermore Fig. 14 presents the
influence of friction on rail in Proposed-2 Model subjected
to simulated pulse-type motion (50-story, input period
T = 2.0 s). It can be observed that, while the reactions
of TMD supports and TMD stroke are affected slightly
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Fig. 13 Influence of friction on rail in Proposed-1 Model subjected to simu
in a damped process, the superstructure response and
base-isolation story response are not affected so much.
It can be concluded that, although the frictions of TMD

mass on rail in the proposed systems reduce the TMD
stroke for both long-period ground motions and pulse-
type ground motions, those do not affect so much on
the building response.
Reduction of TMD stroke using various methods
In the large mass-ratio TMD, the reduction of stroke of
TMD is a key issue. Figure 15 shows several attempts to
implement it. Proposed-1 model is a basic model. As its
derivatives, Proposed-1-1 model (detuning), Proposed-1-2
model (increased damping) and Proposed-1-3 model
(increased TMD mass-ratio) are considered. Further-
more Proposed-2 model is a derivative of Proposed-1
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Fig. 14 Influence of friction on rail in Proposed-2 Model subjected to simulated pulse-type motion (50-story, input period T = 2.0 s)

Hashimoto et al. Future Cities and Environment  (2015) 1:9 Page 12 of 19
model and includes an inertial mass damper in TMD.
The Imass TMD model is also a derivative of Proposed-1
model and has an inertial mass damper between TMD
mass and ground.
Table 1 shows design conditions on TMD parameters

in above-mentioned several models for stroke reduction.
The TMD parameters have been determined so as the re-
duction of TMD stroke from Proposed-1 model under a
long-period ground motion to be almost equivalent.
Figure 16 shows the responses ((a) deformation of base-

isolation story, (b) Top-floor absolute acceleration, (c)
Superstructure deformation, (d) TMD stroke, (e) TMD
displacement relative to ground (f ) Reaction of spring
supporting TMD, (g) Reaction of oil damper supporting
TMD, (h) Reaction of inertial mass damper supporting
TMD) to a long-period ground motion and Fig. 17
shows those responses to a pulse-type ground motion.
The comprehensive comparison of the response charac-
teristics in Fig. 16 will be shown in Fig. 20 and Table 2.
A similar comparison of the response characteristics in
Fig. 17 will be shown in Fig. 21 and Table 2.
Figure 18 shows the comparison with BI model under a

pulse-type motion and Fig. 19 indicates the comparison
with Proposed-1 model under a pulse-type motion. The
comprehensive comparison of the response properties in
Figs. 18 and 19 will be shown in Fig. 21 and Table 2.
Figure 20 illustrates the response comparison under a

long-period ground motion. The maximum responses
with respect to the input period have been taken. It can
be observed that, while Imass TMD model is superior
to Proposed-2 model in superstructure responses to some
extent, Proposed-2 model is superior to Imass TMD model
in TMD reactions. On the other hand, Fig. 21 shows the
response comparison under a pulse-type ground motion
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Fig. 15 Several proposed models and conventional model for TMD stroke reduction

Table 1 Design conditions on TMD parameters in several models for TMD stroke reduction

Proposed-1 Model
as basic model

Proposed-1-1
Model (detuning)

Proposed-1-2 Model
(increased damping)

Proposed-1-3 Model
(increased TMD
mass-ratio)

Proposed-2 Model
(with inertial
mass damper)

Imass TMD Model
(conventional model
with inertial mass damper)

TMD mass-ratio μ 10 % 10 % 10 % 26.7 % 10 % 10 %

Inertial mass
damper ratio ηs

– – – – 0.06 0.08685

TMD damping
ratio h2

0.3 0.3 0.535 0.3 0.3 0.3

Tuning ratio γ 0.8780 1.2430 0.7540 0.7880 0.8850 0.8950
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Fig. 16 Response to long-period ground motion

Table 2 Response comparison among proposed models and conventional models under long-period and pulse-type ground motions

Proposed-1-1
Model

Proposed-1-2
Model

Proposed-1-3
Model

Proposed-2
Model

Imass TMD
Model

NewTMD
Model

Long-period ground motion

Deformation of base-isolation story × △ ◎ △ ◎ 〇

Top-floor absolute acceleration × △ ◎ △ ◎ •

Deformation of superstructure × △ ◎ △ ◎ •

TMD stroke Similar reduction from Proposed-1 Model

TMD displacement relative to ground × ◎ 〇 〇 ◎ ◎

Reaction of spring supporting TMD × ◎ × △ × △

Reaction of oil damper supporting TMD • △ × △ × △

Reaction of inertial mass damper supporting TMD – – – ◎ × –

Pulse-type ground motion

Deformation of base-isolation story • • • • • •

Top-floor absolute acceleration • • • • • •

Deformation of superstructure • • • • • •

TMD stroke ◎ 〇 • ◎ • 〇

TMD displacement relative to ground • • • 〇 ◎ 〇

Reaction of spring supporting TMD △ ◎ × • △ △

Reaction of oil damper supporting TMD △ △ × • × ×

Reaction of inertial mass damper supporting TMD – – – ◎ × –

◎: excellent performance, 〇: good performance, △: fair performance, ×: ordinary performance
•: small change from Proposed-1 model
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Fig. 17 Response to pulse-type ground motion
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(comparison to BI Model and Proposed-1 Model, compari-
son of inertial mass damper reaction in Imass TMD Model
to Proposed-2 Model). For pulse-type ground motions
without peak with respect to input period, Fig. 21 has
been derived from Figs. 18 and 19. It can be observed
that, while Proposed-2 model and Imass TMD model
are almost equivalent in superstructure responses, Proposed-
2 model is highly superior to Imass TMD model in TMD
stroke and TMD reactions.
Table 2 presents the response comparison of the pro-

posed models and conventional models with Proposed-1
model under long-period ground motion and pulse-type
ground motion. Proposed-1-1 model exhibits a good
TMD stroke reduction performance under pulse-type
ground motion against Proposed-1 model while the struc-
tural response under long-period ground motion increases.
(a) Deformation of base-isolation story (b) Top-floor ab
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Proposed-1 model while the TMD-supporting member re-
actions under long-period ground motion and pulse-type
ground motion cause some problems. NewTMD model ex-
hibits a good reduction performance of relative displace-
ment of TMD mass to ground under long-period ground
motion against Proposed-1 model while the TMD-
supporting member reactions under long-period ground
motion and pulse-type ground motion cause some
problems.
It is important to investigate the sensitivity of the system

response to the change of the frequency of long-period
ground motions. When the input frequency of long-period
ground motions changes from the resonant situation, the
TMD stroke and the reaction in the TMD decrease. Fur-
thermore it has been confirmed that the response reduction
performance in the TMD stroke and the reaction in the
TMD is high in the proposed system compared to the con-
ventional systems.

Conclusions
The following conclusions have been derived.

(1)In order to overcome the difficulties caused by the
resonance of a base-isolated building under long-period
ground motions and the ineffectiveness of TMD under
pulse-type ground motions, a base-isolated building
with a large mass-ratio TMD at basement has been
introduced. This new base-isolated building system
is also aimed at enhancing the earthquake resilience of
high-rise buildings. The proposed hybrid system of
base-isolation and structural control is effective for both
long-period ground motions and pulse-type ground
motions. This hybrid system possesses advantageous
features compared to existing comparable systems
with a TMD at the base-isolation story. The TMD
stroke can be reduced to a small level with the use of
an inertial mass damper and its reaction can be
limited to a lower level by detaching its connection to
ground. The proposed hybrid system has another
advantage that the TMD mass does not bring large
gravitational effect on the building itself because of
the placement of TMD at basement.

(2)The proposed system (Proposed-1 model) can reduce
the building response under a long-period ground
motion by 38 % compared to the base-isolated
building and keeps the base-isolation performance
under a pulse-type ground motion.

(3)Although the proposed system (Proposed-2 model)
increases the building response under a long-period
ground motion slightly compared to the system
without an inertial mass damper, the response is still
smaller than that of a base-isolated building without
TMD (BI model). In addition, the proposed system
(Proposed-2 model) can reduce the TMD stroke
under a long-period ground motion owing to the
inertial mass damper. Furthermore, the proposed
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system (Proposed-2 model) can reduce the TMD
stroke under a pulse-type ground motion owing to
the inertial mass damper.

(4)The proposed system (Proposed-1 model and
Proposed-2 model) can reduce the TMD stroke and
TMD reaction effectively compared to the conventional
NewTMD model and Imass TMD model for both
long-period ground motions and pulse-type ground
motions.

(5)Although the frictions of TMD mass on rails in the
proposed systems reduce the TMD stroke for both
long-period ground motions and pulse-type ground
motions, those do not affect so much on the building
response.
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