Whatever the building to build or manage, solutions to control energy consumption must be sought. This is true in the world for all types of buildings, industrial, commercial or residential. Before designing or improving a building, it is essential to study its energy needs and energy sources available, and then look for the best adequacy of management systems, distribution networks and consumer equipment taking into account operating requirements.
Energy demand
The power industry emissions were 10.9 giga-tonnes of carbon dioxide equivalents (GtCO2e) per year in 2005, i.e. 24 % of global Greenhouse Gas (GHG) emissions, and this is expected to increase to 18.7 GtCO2e per year in 2030 (Jelle et al. 2012). The world population is estimated at 8.2 billion people for an energy consumption of15.3 billion-tone oil equivalent (toe) in 2030 (International Energy Agency (IEA) 2012). There is a statistically relation between population and economic growth, energy use, and CO2 emissions (Mohd Shahidan et al. 2013). The population growth increase energy use. An important part of this energy is use in the building sector, that represent about 40-50 % of the energy consumed in developing countries and will be responsible nearly 4300 toe of CO2 emissions for these country in 2030 (International Energy Agency (IEA) 2012). In Cameroon, the energy demand still remains unsatisfied and the access to modern energy is very low, in the national average range of 15 % for electricity and 18 % for domestic gas. In addition, the electricity access is less than 5 % in rural areas against 50 % in urban areas. All sectors combined, the Cameroonian final energy consumption amounts to approximately 5235 Ktoe in 2006 (SIE-Cam; AES-Sonel; CSPH, Nkutchet, 04).
Tropical building low energy
Energy is used for the building comfort that means cooling in tropical region. The construction of low energy buildings is an effective solution that achieves significant energy savings. Low-energy buildings use passive techniques, such as optimal solar gain, and advanced active systems, such as mechanical ventilation with heat recovery, to create comfortable internal environments that have low energy demand. Renewable heating systems including biomass boilers, active solar water heating and ground source heat pumps can be used to supply heating and hot water needs with reduced gas emissions. Solar photovoltaic can be used to provide electricity. Solar energy systems can play an important role in reducing building energy consumption (Hestnes 1999) in tropical region because of it abundance.
The building integrated photovoltaic
Building integrated photovoltaic (BIPV): The concept where the photovoltaic element assumes the function of power generation and the role of the covering component element has significant influence on the heat transfer through the building envelope. Kimura (Kimura 1994), Taleb and Pitts (Taleb & Pitts 2009), and (Zhai et al. 2008) have illustrated various methods of installing the PV modules into a building for a concept of green building. In modern buildings, windows play an important role in energy performance with respect to heating/cooling loads and artificial lighting requirements. The relationship between window design and building energy performance has been extensively researched (Stegou-Sagia et al. 2007; Iqbal & Al-Homoud 2007; Lee & Selkowitz 2006; Wong et al. 2005; Bodart & De Herde 2002; Zain-ahmed et al. 2002; Mehlika et al. 2000; Al-Homoud 1997). Ciampi et al. (Ciampi et al. 2003) show that carefully designed ventilated facades, walls and roofs can reduce considerably the summer thermal loads.
The advantage of integrated photovoltaic over non-integrated systems is the reduction of construction costs of building materials. These advantages make BIPV one of the fastest growing segments of the photovoltaic industry (Park et al. 2010). For BIPV systems to achieve multifunctional roles, various factors must be taken into account, such as the photovoltaic module temperature, shading, installation angle and orientation, effect integration on building thermal comfort (Peng et al. 2011). Infield et al. (Infield et al. 2004) applied a steady state analysis model in a ventilated PV facade in order to evaluate an overall heat loss coefficient and thermal gain factor and suggested that the temperature of the PV module can be reduced by flowing air between the PV module and the double glass wall. Similar studies were carried out by (Tripanagnostopoulos et al. 2002), (Zondag et al. 2002), (Prakash 1994) and (Chow et al. 2003) by flowing air and water below the PV module to increase the electrical efficiency of the PV module. (Tiwari et al. 2006) have evaluated the performance of the photovoltaic (PV) module integrated with air duct for composite climate of India. Analytical expression for overall energy efficiency (electrical and thermal) has been derived. It is observed that there is a fair agreement between theoretical and experimental observations and concluded that an overall energy efficiency of photovoltaic thermal (PVT) system is significantly increased by utilization of thermal energy in PV module. (Agrawal & Tiwari 2010) optimized the opaque type BIPVT system for cold climatic conditions. The system fitted on the roof top of Srinagar over an effective area of 65 m2 produces annually the electrical and thermal exergy of 16209 kWh and 1531 kWh. (Vats & Tiwari 2012) evaluate a building integrated semitransparent photovoltaic thermal (BISPVT) system and found for an effective area of 5.44 m2 overall annual thermal energy gain is 2497 kWh and electrical gain is 810 kWh. (Ekoe et al. 2015) proposed a thermal modelling of a semi-transparent PV module with fins at the back surface. It is observed that the system exhibits higher thermal and electrical efficiencies than the conventional BISPVT systems, the maximum value of cell temperature can decreased from 62.68 °C to 53.75 °C and heat extracted by air in a year from the fin surface is amounts 55.4 kWh/year. The results of basic studies on irradiance and energy output of photovoltaic systems have been reported by some researchers (Rahman et al. 1988; Celik 2003; Smiley 2001) while there have been other studies on the temperature and generation performance of photovoltaic modules (Mattei et al. 2006; Carr & Pryor 2004; Chenni et al. 2007) integrated in building.
Building indoor air condition
The humidity is among the indoor environmental factors that could affect thermal comfort in a building. Accurate prediction of indoor conditions, specifically indoor temperature and relative humidity, are important for the following four reasons: 1) To better assess the hygrothermal performance of building envelope components (Tsongas et al. 1996; Tariku et al. 2009) and reduce the likelihood of building envelope failure. High indoor humidity can result in excess moisture accumulation in the structures and deterioration of components due to mold/decay or corrosion. 2) To maintain the critical relative humidity range, which is specific to the building’s operation (Trechsel 2001; Rode 2003). The relation between relative humidity of air and indoor air temperature was developed by Djamila in the Malaysia climate environment for indoor temperature range of 27 °C to 35 °C (Djamila et al. 2014). Hartwig summarizes the findings concerning indoor relative humidity, and specifications, which are partly derived from standards or guidelines for the hygrothermal design of building components Hartwig et al.
When solar photovoltaic system is integrated in building, indoor air temperature and humidity (IATH) are changed due to the modification of thermal resistance of building envelope. There are not many research focused on that ways. In this paper, the effect of the BIPV on the indoor air temperatures and humidity (IATH) of a multiple storey buildings under the tropical climatic conditions of Yaoundé, Cameroon has been modelled and analysed. Two cases of BIPV made of 290 m2 area of PV have been considered, i) roof integrated and ii) façade integrated. In addition, building orientation, roof pitch and the building materials are also been explored and optimised to provide the best combination.