Innovative visions are needed in emerging cities to reduce the impact on the environment while creating places that increase social cohesion, or accelerating human interaction in education, health and employment to improve the quality of life for an ever greater percentage of our world population. The technological advancements should be fully utilized to realize these visions and goals. For instance, temperature, pollution, water systems, waste management systems, radiation, traffic, air pollution and other components can be monitored through wireless sensor networks for achieving the greatest efficiency [13]. These systems can help detect leaks and problem areas quickly, potentially saving electricity and other precious resources. In order to save additional resources, cities can consider grassroots initiatives, like farmer’s markets and community-supported agriculture. Urban farming is a simple change, since dirt beds can be put nearly anywhere and grow food locally [13]. Organizing community carpools and encouraging people to recycle waste and use reusable bags for shopping can make huge impacts as well. A staggering 75 % of solid waste is recyclable, but steps need to be made to encourage more recycling to happen, as 70 % is still thrown into the trash [13–15]. Cities can become also more sustainable and attractive by adding open space. Hiking trails, activity centres, and parks can draw people into the city and reduce waste.
Cities are vital to the future global economy. For instance 41 % of the UK's population lives in the country's ten largest urban areas [16]. However, cities are struggling with climate change, changes in population and demographics, congestion and healthcare, and pressure on key resources [17, 18]. In future there will be a large market for innovative technologies/approaches to create efficient, attractive and resilient cities [18, 19].
Recent research has been focused on the development of a data platform for power, heat and cooling usage in cities and individual usage patterns in domestic, commercial and industrial buildings [20, 21]. There is a lack of information in the rapidly changing energy market. Solutions are required to better handling of cost, supply and demand of energy in cities and towns. With macro-level energy data, cities can invest in new innovations, provide more focused geographic support to areas where energy supply is lacking, and gain better decision-making evidence on issues such as targeted building retrofitting and fuel poverty [21].
Responding to the rapid urban development and challenges, future cities have become a pressing issue due to the impacts of global warming problems. This inevitably requires identifying prioritizing and structuring new design and managerial tools to improve their environmental, urban and fiscal sustainability.
Emerging cities should also develop local and national policies to retain highly qualified individuals. Currently in developing world, the proportion of cities making effort to retain talented and visionary individuals is alarmingly low. Asia could count as an exception where half of the cities are putting effort to retain talent. In China, Chongqing has developed an ambitious training programme to support the transition of rural migrants from manual-based to skill-based types of work; by 2009, nearly one-third of migrants had benefited from the scheme [22]. Dubai is also promoting education especially in the fields of engineering and information technologies [23].
Some cities in developing countries have embraced the model of world-class innovation clusters, such as California’s Silicon Valley or Boston’s Route, to become ‘high-tech hubs’ [6]. Those that have met with success in this endeavour, such as India’s Bangalore, owe it to the same basic factors: the presence of top-quality academic and research institutions as well as substantial public and corporate investment. However, low infrastructure development rate and unbalanced distribution of benefits of growth across all the population are signalling threat for these regions. Quality of life is rapidly emerging as a major asset in any efforts to attract and retain creative minds and businesses. It is not surprising that Toronto, San Francisco or Stockholm are regularly ranked among the top performing cities in the world, since they are found as performing particularly well in a wide range of both economic and quality of life indicators including crime, green areas, air quality and life satisfaction. Except more developed nations, Singapore, with a similar balance of quality of life attributes, also ranks among the top world cities and the highest among developing countries [6].
Inspiring from the above given successful examples, each city should develop its own strategic future vision for realizing the basic concepts, with the aim of maximizing an integrated total of environmental, social and economic values. When setting out the future vision, both a backcasting approach of looking back from a desirable future to the present and a forecasting approach of looking forward from the present to the future are essential to enhance feasibility. Moreover, it is important to set the vision in a way that fully embodies each city's diverse and unique features that arise from its natural and social characteristics. Each city is required to tackle the challenges of the environment and aging society, and is further encouraged to take on additional challenges in areas that can enhance their originality and comparative advantages in cooperation with other cities in the same nation and abroad. It will be important to gather worldwide wisdom by absorbing information on other cites' successes from all over the world, as this will help integrate a variety of efforts in different fields and realize synergistic effects. By accumulating successes, cities are expected to break away from subsidies and acquire self-financing independence, establishing financially and socially autonomous models [6].
The European “Smart Cities & Communities Initiative” of the Strategic Energy Technology Plan (SET-Plan) promotes 40 % reduction of greenhouse gases in the urban environment by 2020, which could be achieve with sustainable and efficient production, conversion and use of energy. Yet the domestic sector will increasingly become the leading energy sector as more people around the world aspire to higher living standards, which will drive the demand for air conditioning and electric power. Zero energy buildings (ZEB)/Zero carbon buildings (ZCB), therefore, expected to have a vital role to achieve sustainable and smart cities. Kylili and Fokaides define ZEBs as buildings that have zero carbon emissions on an annual basis [24]. The required ZEB aspects as part of future’s smart cities are demonstrated by the Kylili, and Fokaides as given in Fig. 3.
Various designs for future cities have been mooted, some more adventurous than others. Some are actually being built. All aspire to being carbon neutral and sustainable, exploiting the latest technologies for construction, renewable energy, recycling and transportation.
Recently the British Government has announced plans for new garden cities in the UK which emphasised the development of new communities adapted to local needs [25]. The aspirational “wish list” harks back to Howard and, although arguably obvious, it does express what is expected of a future British garden city:
-
Strong vision, leadership and community engagement
-
Land value capture for the benefit of the community
-
Community ownership of land and long-term stewardship of assets
-
Mixed-tenure homes and housing types that are affordable for ordinary people
-
A strong local jobs market in the Garden City itself, with a variety of employment opportunities within easy commuting distance of homes
-
Beautifully and imaginatively designed homes with gardens, combining the very best of town and country living to create healthy homes in vibrant communities
-
Generous green space linked to the wider natural environment, including a surrounding belt of countryside to prevent sprawl, well connected, biodiverse public parks, and a mix of public and private networks of well-managed, high quality gardens, tree-lined streets and open spaces
-
Opportunities for residents to grow their own food, including generous allotments
-
Strong local cultural, recreational and shopping facilities in walkable neighbourhoods
-
Integrated and accessible low-carbon transport systems – with a series of settlements linked by rapid transport providing a full range of employment opportunities
Garden cities built along these lines will largely exploit existing technologies, an approach already adopted elsewhere. The Zero Carbon Building (ZCB) in Hong Kong, is located at the heart of Kowloon Bay, the upcoming vibrant premier business district. Covering a total area of 14,700 m2 comprising a 3-storey Zero Carbon Building and a landscape area [26] it both showcases state-of-the art eco-building design and technologies to the construction industry locally and internationally and raises community awareness of low carbon living in Hong Kong. To achieve zero carbon emissions, ZCB adopts an integrated design where the ZCB building and its surrounding woodland must be seen as a single entity. Nevertheless, in addition to the sustainability of future’s construction we should also consider the “visuality” and “functionality” of buildings. An intriguing example, Hong Kong Polytechnic University’s 15-storey Jockey Club Innovation Tower competed last year [27]. It prospers the diversity, expresses the dynamism and creativity of university life with creating a fascinating turban area. While the tower provides multifunctional usage and is visually attractive, its unique geometry covers less land space than its contenders. The building is a showcase of future high rise construction. Future cities could evolve by progressively adding more buildings following the same principles, each designed for its intended function, residential, offices etc.
The principles incorporated into Hong Kong’s ZCB and Jockey Club Innovation Tower can also be seen in Swedish developments. Malmö, Sweden’s largest city has undergone economic changes replacing its tradition heavy industry with small and medium size companies. Kjellgren Kaminsky in combination with builders Höllviksnäs Förvaltnings AB, won an open competition for passive houses in April 2009 which have now been built. The buildings have a number of measures for ecological sustainability using a combination of wind, geothermal and solar energy. The original biodiversity of the local area has been maintained and especial attention has been applied to rainwater collection and sewage treatment.
Hammarby Sjöstad (Hammarby Lake City) is a new district in Stockholm built on a previously industrial and harbor area. Hammarby is meant to provide 10,000 apartments for 25 000 inhabitants and occupies 200 hectares of land, close to the city centre. The required environmental impact of the project was limited to no more than half that of the best projects built at the end of the 1990s; in the long term, the energy demand should not exceed 60 kWh/m2 per year of which not more than 20 kWh/m2 per year should be electric energy [28]. As with the Malmo development, energy, waste and water systems have been designed for sustainability. A similar development, Beddington Zero Energy Development (BedZED) in London, was completed in 2002 comprises 82 affordable dwellings and commercial site (offices, workspaces) spread on approximately 2500 m2. The project is a conspicuous example of urban development as it addresses many challenges such as combining workspace with housing, matching with dense urban population, achieving zero carbon standards and increasing comfort level [29].
Japan is also actively developing sustainable “eco” cities, of which a particularly interesting example is the Kitakyushu Eco-Town project [30]. Like the Swedish examples, its development is a response to the decline in highly polluting heavy industry, which contaminated the local, land, sea and air in the 1960s. The target is to reverse this environmental damage by creating a sustainable community through a partnership of the government, commercial organisations and citizens. A key aspect is local recycling of discarded items from bottles to bicycles. Furthermore, all Eco-Town companies must allow their facilities to be inspected by citizens in order to eliminate public distrust and anxiety concerning potential pollution.
The developments described above are based essentially on established technologies following principles that can be applied readily elsewhere to achieve urban sustainability in the near future. They are targeted at relatively modest sized communities typically adjacent or within existing conurbations.
In parallel with these projects, far more ambitious, schemes have been initiated that are creating completely new sustainable cities on virgin ground, especially in states with strong central, governments and with considerable national wealth earned from the sale of fossil fuels. A good example, of a future community is Masdar City in Abu Dhabi (UAE), a project to create the world’s first low carbon/zero waste sustainable city [31, 32]. Completely powered by renewable energy, and covering an area of more than seven square kilometres, Masdar City will have the capacity to house 40,000 residents, and host a range of businesses and institutions employing 50,000+ people. But, it is intended to be more than just a demonstration of the practicality of using renewable energy technologies. Masdar City will host a vibrant, innovative, community of academics, researchers, start-up companies and financiers – all focused on developing renewable energy and sustainability technologies.
Another interesting project, Silk City in Kuwait, will be completed in 2023 and will include 30 communities grouped into four main districts; Finance city, Leisure city, Ecological City and the Educational - Cultural city. Silk City will become a new urban centre accommodating 750,000 residents in over 170 thousand residential units. This $132 billion project will create a modern and sustainable oasis, providing hundreds of thousands of jobs and investment opportunities within the world’s tallest tower “Burj Mubarak al-Kabir” located in Finance City [33].
King Abdullah Economic City is another representative of the future city concept aiming to have a positive impact on the socio-economic development of Kingdom of Saudi Arabia [34]. The first stage of the city was finished in 2010 and it will be fully completed in 2020. It will consist of several zones enabling industrial, educational, business and residential activities over an area of 173 km2. Energy/carbon, water, waste, ecology/biodiversity and pollution prevention have been adopted as key parameters in the design of the city [34, 35]. It is also aimed to create up to one million jobs for the youthful population of the country, with where 40 % are under 15 [36].
In response to its considerable environmental problems, a result of its recent industrial growth and need to meet the aspirations of its increasingly wealthy population, China has initiated the construction of many cities based on sustainable designs. In contrast to Europe and Japan, China is able to build on green field sites, an example is Tianjin Eco City in China [37]. Although its development has not been without problems [38] it does appear to be growing at a viable pace [39]. The stated intention is to move one hundred million people into new cities in the next decade, especially in the western part of the country.
Azerbaijan is developing Khazar Islands, a sustainable $100bn city in central Asia on the Caspian Sea, which, when complete in 2020 to 2025 will have 1 m inhabitants. Amenities provided in the city will include; cultural centres and university campuses [40]. The prestigious $2bn Azerbaijan Tower, intended to be the world’s tallest, presumably trying to outdo Burj Mubarak al-Kabir. A Formula 1 circuit will also be included. All buildings will be capable of withstanding magnitude 9.0 earthquakes.
While the new cities described above are ambitious they are based on existing or emerging technology and, in principle at least, can be completed within the next decade, designs for far more futuristic cities have also been mooted, siting them underground [41–43], underwater [44], floating on the sea [45, 46] or even in the sky [47, 48].
Arguably the development of the underground city has already started. In London, where real estate is very expensive, wealthy property owners are digging downwards to expand their living space thus avoiding planning regulations. The London Crossrail scheme shows that large underground spaces can be created, but as Harris notes, quoting London’s Road Task Force, why not put major roads into new tunnels “…leaving the surface, with its sunlight and trees, for public spaces” [41]? Maybe in localities such as London, where the underlying clay is conducive to excavation, a present day city can evolve into a future city by digging downwards rather growing upwards?
An alternative option for London is Sure Architecture’s “Endless (Vertical) City” envisages a 55 storey tower designed for London site which will be a self-contained community complete with areas dedicated to parks [49]. Two ramps wind around the exterior essentially providing “vertical” streets since London does not have the space to accommodate further horizontal streets.
With Japan’s lack of building land and susceptibility to earthquakes it is perhaps not surprising that a Japanese company, Shimizu Corporation, has proposed building self-sufficient cities under the sea called “Ocean Spirals” [50–52]. A city with typically 5,000 inhabitants will be contained within a 500 m diameter water-tight sphere, at or near the ocean surface, and connected by a huge spiral to the ocean floor as much as 4000 m below. Aquaculture would be practised in the surrounding sea to produce food sustainably and fresh water would be obtained by desalination. Shimizu claims the first city, costing £16bn, could be ready by 2030, having taken just 5 years to build…and the price of further cities would be reduced as numbers increased.
In contrast to Shimizu, Architect Vincent Callebaut has designed the “Lilypad” city, capable of accommodating 50,000 people floating on the ocean surface [53, 54]. The city integrates a range of renewable energies (solar, thermal, photovoltaic and wind). Intriguingly, since these floating cities float near a coast or travel around the world following the ocean currents, they would avoid the problems of sea level rise resulting from climate change [53, 54].
The Venus Project, proposed by US inventor, Jacque Fresco, is another circular city comprising a central dome containing the cybernetic systems that maintain core automated city functions [55, 56]. Fresco goes way beyond developing a sustainable city. He wishes to create an utopian, technological civilisation without money that avoids the ills of all previous forms of economic and political systems…capitalism, government, fascism, communism, socialism and democracy. Fresco considers that by creating the ideal environment for humans it will naturally eliminating violence, greed, and the inequalities that presently afflict us. His philosophy seems to be in a tradition that can be traced back to Plato and Thomas More. The ideas espoused are beguiling, but are they achievable? Could they survive in a world where the pursuit of power and wealth is the prime objective of some individuals, whether ostensibly justified by nationalism, religious belief, or political creed? Indeed, to fully buy into the Venus Project requires a strong belief in its philosophy.
Even more fanciful than London’s “endless City” and inspired by the form of the lotus flower [48], is Tsvetan Toshkov’s, “'City in the sky' which he claims is a concept embodying an imaginary tranquil oasis above the mega-developed and polluted city, where one can escape from the everyday noise and worries.” Although a delightful exercise in creating a utopia away from the strains of modern city life, the engineering stresses within the proposed structure raise questions about its practicality.
Despite the ambitious, indeed grandiose, designs of future cities requiring considerable planning, rapid urban renewal may become vital in response to natural disasters notably earthquakes and hurricanes. While nobody would wish such misfortunate on any city with the human tragedies engendered, the opportunity presented to rebuild a devastated city to both improve its sustainability and to reduce the risk of future disaster cannot be overlooked, not least as an honour to those who have suffered. Two examples are the Wenchuan and Qingchuan districts of Sichuan Province, severely damaged by the 2008 earthquake, which are now in the reconstruction process.
These areas suffered because buildings were not earthquake resistant. Reconstruction has been difficult and a large number of temporary shelters that are neither durable nor thermally comfortable have been built in an attempt to meet the urgent needs of those affected. A research team led by Prof. Zhu Jingxiang of the School of Architecture at The Chinese University of Hong Kong (CUHK) has developed an integrated light-structure system for the reconstruction of New Bud Primary School at Xiasi village in Sichuan’s Jiange County [57]. With the support of the Hong Kong Dragon Culture Charity Fund and the CUHK New Asia Sichuan Redevelopment Fund, the new school was completed and in operation in just two weeks. The building is safe and durable, and the cost of construction is low. It also looks attractive and features good thermal performance and a high energy-saving capacity. Maybe inspired, elegant, but eminently practical designs to rebuild shattered communities rapidly and sustainably will be more important and helpful to humanity than some of the grandiose schemes presently on drawing boards?